论。
最直接的,如果标准猜想成立,通过它可以直接推出韦伊猜想,并且可以推出frobenius在光滑投影代数簇的上同调群上的作用是半单的,甚至还可以推出代数簇中代数闭链(ycle)的数值等价(numbericalequivalence)和同调等价(homologicalequivalence)是同一个等价关系等等。
这些都是已知的。
还有那些有待去挖掘的理论。
毫不夸张的说,正是这一猜想指引着现代代数几何学的发展。
不过,到这里为止,它的历史使命也该结束了。
随着他的手抬起,那支落在白板上的笔动了。
【……当i≤n/2时,a^i(x)nker(l^(n−2i+1))上的二次型x→(−1)^i·l^(r−2i)x.x是正定的……】
其中x是域k上光滑投影代数簇,l是与k的特征互素的素数,h^i(x,ql)是x的i阶l-adic上同调群,x与投影空间的超平面的交集是x的子代数簇。
当x是代数曲面或复代数簇时,这个猜想是已知的。
而现在他要证明的便是,在一般情形下,它同样是成立的!
时间一分一秒的过去。
白板上的算式越来越多。
坐在台下的许多人,摄取信息的速度,甚至渐渐地开始跟不上他板书的速度。
眉头紧锁、抱着双臂坐在台下的佩雷尔曼,忽然坐直了身子,直视着白板的瞳孔瞬间收缩成了一个点。
坐在他旁边不远处的舒尔茨,反应几乎一样,甚至于发出了难以置信地惊叹声。
“……利用l^2上同调方法来得到完备流形紧致商的拓扑信息,将紧流形上的hodge理论推广到完备非紧流形!”
“上帝……他,他简直是个天才!”
这是阿提亚爵士于1976年发表在《数学年刊》上发表的那篇关于离散群和椭圆算子研究的论文中,提到的一个关于l^2上同调理论的性质。
令人惊讶的不只是他的构思之巧妙,真正让舒尔茨震惊万分的是,他对于这些数学工具的运用,就像是呼吸一样自如。
就仿佛,那些数学工具,就是为他而生的一样。
看了目瞪口呆的舒尔茨一眼,一直都没有开口说话的佩雷尔曼,罕见地嘀咕了一句。
“……这种显而易见的事情,