舟都有些不好意思了,于是轻咳了声说道:“这么说太夸张了,我提供的只是个数学模型而已。”
站在旁边的奇里克教授同样喜形于色,不过相比起康尼来说,他好歹见过不少风浪,只是笑着打趣道。
“你就不要谦虚了,你的数学模型毫无疑问派上了大用场,如果用传统方法去寻找这个样品,能在年底之前做出阶段性成果我们都得谢天谢地了。”
相比起金陵计算材料研究所和萨罗特实验室,他们所从事的工作主要还是集中在理论上,即寻找那两个能带结构接近于零色散的能带……
根据陆舟的数学模型,这两个能带的位置最终在实验中,被确定在石墨烯狄拉克点的负掺杂和正掺杂上。
至于这有什么用?
那用处可大着呢。
找到了那个零色散的能带,就等于找到了他们所要找的莫特绝缘体。
当他们在这个二维结构材料上施加了一个小的栅极电压,向这个莫特绝缘体添加一定量的电子时,单个电子便会与石墨烯中的其他电子结合在一起,允许他们通过他们之前不能流到的地方。
在整个过程中,陆舟他们一边降低材料的温度,一边继续测量材料的电阻。很快他们便发现,当温度下降到101k开始,电阻的下降速率达到一个突兀的峰值,而电阻的数值也急剧向零逼近。
很明显,这便是他们要找的东西。
不得不承认,有时候理论与应用的研究并不冲突,尤其是在材料学这一行。
当然了,除了这些通俗易懂的研究之外,还有很多更深奥的理论工作在里面,也有很多即便是陆舟也没想好该如何解释的问题。
比如在1.1°附近的超晶格的禁带宽度该如何解释,比如在该角度下形成的莫特绝缘体具体该由什么序参量来描述……
或许以后会有人来完成这些更深入的理论工作,也或许他们的合作伙伴会感兴趣完成这些后续的工作。
总之,他们通过n掺杂的方式改变了材料的载流子浓度,并且对修饰过的二维材料的重叠角度进行了调整,最终在新的角度上找到了他们追寻的“半填充”结构。
当温度达到101k时,这种新材料如他们想象中的一样,发生了超导转变。
虽然101k同样谈不上有多么的高温,但相对而言,毫无疑问这是一项惊人的成果。
一脸激动地看着陆舟,康尼继续说道:“教授,我们该如何给新材料命名?”