转化为一个只有数字的运算问题。
这样更简单,而且通用性还强。
比如经典的“鸡兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
我们也可以换个说法:“鸡翁一值钱二,鸡母一值钱四。今买三十五鸡共用钱九十四,问鸡翁、鸡母各几何?”
这两个问题乍看起来毫不相关,但是如果忽略掉其中的“雉兔”,“鸡翁鸡母”,“头足钱”等等,那么它们完全可以看作是同一个题目。
提炼出来的题目如下:
一个数甲,加一个数乙,等于三十五;
一个数甲乘以二,加上,一个数乙乘以四,等于九十四。
其中的数甲和数乙可以分别代表雉和兔的个数,头数;也可以代表鸡翁和鸡母的个数。
至于下式中的二和四,自然是分别代表雉和兔的足数;或者鸡翁和鸡母的价格。
此时,我们只要找出符合上面两个等式的数甲和数乙的真实个数,那么自然可以同时将上面的两道题给彻底解开。
甚至碰到了其他类似的题目,比如“今有大僧小僧共三十五,馒头九十四,大僧每人需四个馒头,小僧需两个,问大小僧人各几丁?”
对于这个问题,我们也可以快速的说出答案,而不用再浪费时间进行求解。
通过以上这些,我们可以看出来,对于这类问题,我们完全可以将其抽象出来,写成只有数字和运算符号的等式。
而这几个等式呢,又完全可以表述为现实世界中无数个与之类似的题目。
此时只要解出了等式,那么也就代表着解决了这无数个类似的题目。
这种对现实问题进行抽象,而只研究数、数量、关系和结构等概念的一门学科,我们就可以称之为数学。
郎敬波确实是第一次听到这样的说法,所以深有感触,不过突然,他眼神一凝,小声嘀咕道:“这不就是算术嘛!”
这确实也可以说是算术,没错。
略微沉思了片刻后,他接着往下看。
有了对现实中数字的抽象之后,我们此时就可以更深一步,研究一些其他的规律,和现实无关的规律。
比如数字本身。
比如,从一开始一直累加,一直加到一百,它的和是多少?
这个你可能可以慢慢的手动加,最后得出答案是五千零五十。
但是如果要加到一千,甚至一万